
MSIL to JavaScript Compiler

Michael Ten-Pow

Problem Description

What is it?
Why is it important?
Why was it hard?

What is it?

 A compiler - translates code into executable
programs
 Input is an MSIL assembly (Microsoft .NET)

 A program written in C#, VB.NET or another .NET
language

 Output is a functionally equivalent program in
JavaScript
 Runs in a browser environment over the web

Why is it important?
 New interest in JavaScript development

 AJAX (Asynchronous JavaScript and XML)
 Web 2.0

 Existing JavaScript development tools are poor - JavaScript was never
meant to be used this way
 No good IDE (Integrated Development Environment)

 Class outlines, code refactoring, code auto-complete (intellisense), project
management

 JavaScript not strongly-typed
 Features that come for free with other languages/platforms are not available

 Build systems, code optimization, code modularization/componentization

Why is it important?

 MSIL has a great set of development tools
 IDEs: Visual Studio, SharpDevelop, MonoDevelop, X-Develop,

Eclipse
 Development can be done in almost any language and compiled

to MSIL using existing compilers
 C#, VB.NET, Java, JScript.NET, C++, OCaml, Boo, IronPython,

Perl, and many others
 MSIL gives us several powerful advantages for free

 Classes, namespaces and other useful language constructs
 Versioned module system (assemblies)
 Code optimization
 XML documentation
 More…

Why is it important?

 JavaScript is single threaded
 Asynchronous callbacks - confusing code
 GUI applications - unresponsive

Why is it hard?

 MSIL and JavaScript do not map “one-to-one”
 Some MSIL language constructs had to implemented

programmatically in JavaScript, or were not supported altogether
 JavaScript is a very dynamic language, MSIL is more strict.

Dynamic aspects of JavaScript are not easily expressed in MSIL.
Compiler/API tricks used to capture dynamic nature of JavaScript

 JavaScript is single-threaded
 Must use “polling” technique to achieve concurrency

Previous Work

 Morfik
 GWT
 Script#
 Disadvantages:

 No threading!!
 Symbol resolution
 Tied to heavy weight frameworks

 Not Script#

Previous Work

Symbol Resolution

9

Symbol Resolution

0

20

40

60

80

100

120

140

160

180

0 1000 2000 3000 4000 5000 6000 7000 8000

of variables

ti
m

e
 i
n

 m
il
li
s
e
c
o

n
d

s

New Approach

 My approach
 Using existing, mature, well-supported, production

quality tools to develop JavaScript applications
 Support for threading

 Why is this better?
 Code auto-completion/refactoring in IDE
 Unit testing
 Continuous integration
 No more callbacks
 GUI applications more responsive

Implementation

 Main parts
 Compiler

 Front end
 Build CFG and code abstractions

 Middle end
 Performs optimizations, pseudo-register allocation

 Back end
 Code generation (threaded/non-threaded)

 Linker
 Resolves symbols and builds executable “binary”

 Kernel
 Written entirely in C#, provides runtime for threading

 Libraries
 Base class libraries, libraries for DOM, CSS, XmlHttpRequest, etc

Implementation - Front End

 Reads in MSIL assemblies using open source
Mono Cecil assembly inspection library

 Builds an abstraction of the code and metadata
 This is called the “Code Model”

 Front ends can be written to support any other
input language
 There is a clean interface to implement this
 Java support would be quite easy to implement

Implementation - Front End

 Code Model:
 Contains useful abstractions of MSIL language constructs

and metadata concepts. For example:
 IAssembly = MSIL assembly
 IAssembly -> GetTypes() returns ITypeDeclaration array
 ITypeDeclaration -> GetMethods() returns IMethodDeclaration

array
 IMethodDeclaration -> MethodBody property:

 Locals, arguments, code size, custom attributes, etc
 MSIL code stream in bytes
 CFG representation of code (most valuable)

 IAssignStatement
 IMethodInvokeExpression
 IBinaryExpression

 Code model contains on the order of 100 different classes

Implementation - Front End

CFG example:
__p.TestLoop = function()

{

 var num1 = 0;

 while(num1 < 100)

 {

 num += 1;

 if(num1 % 10)

 {

 num1 += 1;

 }

 }

}

Implementation - Middle end

Manipulates and optimizes intermediate
form (CFG) to prepare for back end
code generation

Implementation - Middle end
 Basic steps (program/data analysis):

 Separate complex CFGNodes into more simple ones
 Dominator analysis - which nodes ALWAYS come before other nodes as code is

executed?
 Transitive closures - set of all nodes reachable from a given node
 Single Static Assignment (SSA) -
 Loop tree - which loops are inner loops? (useful for optimization)
 Def and Use sets - which variables are defined and used at a given node?
 Liveness - which variables are “live” at a given node? (store meaningful data which is

used later on)
 Reaching definitions - what are the possible definitions of a variable at a given node?
 Gen and Kill sets - like “Liveness” but for expressions
 Optimizations
 Register allocation

 Actual steps involve several iterations of these basic steps and in
different orders (phase ordering)

Implementation - Middle end

 Optimizations
 Copy propagation
 Constant propagation
 Constant folding
 Dead code elimination

Implementation - Middle end

 Optimizations example:
 Demonstrates copy/constant propagation,

constant folding, and dead code elimination
Original C# (not optimized):

private int TestReachingDefs()
{
 int num1 = 10;
 int num2 = 12;
 num2 = num1;
 num1 = 13;
 return num2;
}

Compiler output (optimized):

__p.TestReachingDefs = function()
{
 return 10;
}

Implementation - Middle end

 Pseudo-register allocation
 Pseudo-registers are JavaScript local variables
 Register allocation allows us to reuse pseudo-registers that

are no longer live
 In certain JavaScript runtimes (Rhino JS runtime), local

variables are mapped to actual machine registers at runtime.

 Graph coloring algorithm

Implementation - Compiler

Register allocation example:
 Interference graph

 $t38 and $t84
are temporary variables

 x, f, num2 and num3 are
real local variables or
arguments

 6 variables reduced to
only 4 pseudo-registers

Implementation - Back end

 Perform code generation
 Preemptive code
 Non-preemptive code

 Emits object file for linker
 New back ends can be written to generate code for

other runtime systems
 Actionscript

 Also runs in browser
 Adobe claims 98% penetration (more than JavaScript)
 Hardly any cross-browser issues
 Flash player 8.5 features JIT compiler

 Significantly faster than interpreted JavaScript

Implementation - Kernel

 Written entirely in C#
 Facilitates execution of threaded code
 Simple priority based scheduler
 Provides mechanisms for context switching

Implementation - Libraries

 Base class library (OSCorlib.dll) replacing mscorlib.dll
 Maps special .NET types to built-in JavaScript types

 Object, String, Number, Error, etc
 Provides abstractions for threading

 Thread
 Locks
 Conditions
 Semaphores

 System.Browser.dll
 DOM, CSS, XmlHttpRequest interfaces
 Shows interoperability with existing code

Results

 Threaded code is slower than hand-written JavaScript
 However, perceived performance is not restricted
 “This script has been unresponsive...” - no longer an issue

 Scope chains are shortened to a maximum of 2 levels
 JavaScript programmers modularize code using closures
 This has hidden impact on performance
 Compiler flattens scope but maintains namespace coherence
 Speed increase of by factor of 2 in some cases

Results

 No more symbols at runtime
Symbol Resolution vs. Array Indexing

0

20

40

60

80

100

120

140

160

180

0 1000 2000 3000 4000 5000 6000 7000 8000

of variables

ti
m

e
 i
n

 m
il
li
s
e
c
o

n
d

s

Symbol Resolution Array Indexing

Results

 Development experience:
 Writing C# in Visual Studio is more efficient
 Intellisense
 Code overview
 Documentation *****

