
MSIL to JavaScript Compiler

Michael Ten-Pow

Problem Description

What is it?
Why is it important?
Why was it hard?

What is it?

 A compiler - translates code into executable
programs
 Input is an MSIL assembly (Microsoft .NET)

 A program written in C#, VB.NET or another .NET
language

 Output is a functionally equivalent program in
JavaScript
 Runs in a browser environment over the web

Why is it important?
 New interest in JavaScript development

 AJAX (Asynchronous JavaScript and XML)
 Web 2.0

 Existing JavaScript development tools are poor - JavaScript was never
meant to be used this way
 No good IDE (Integrated Development Environment)

 Class outlines, code refactoring, code auto-complete (intellisense), project
management

 JavaScript not strongly-typed
 Features that come for free with other languages/platforms are not available

 Build systems, code optimization, code modularization/componentization

Why is it important?

 MSIL has a great set of development tools
 IDEs: Visual Studio, SharpDevelop, MonoDevelop, X-Develop,

Eclipse
 Development can be done in almost any language and compiled

to MSIL using existing compilers
 C#, VB.NET, Java, JScript.NET, C++, OCaml, Boo, IronPython,

Perl, and many others
 MSIL gives us several powerful advantages for free

 Classes, namespaces and other useful language constructs
 Versioned module system (assemblies)
 Code optimization
 XML documentation
 More…

Why is it important?

 JavaScript is single threaded
 Asynchronous callbacks - confusing code
 GUI applications - unresponsive

Why is it hard?

 MSIL and JavaScript do not map “one-to-one”
 Some MSIL language constructs had to implemented

programmatically in JavaScript, or were not supported altogether
 JavaScript is a very dynamic language, MSIL is more strict.

Dynamic aspects of JavaScript are not easily expressed in MSIL.
Compiler/API tricks used to capture dynamic nature of JavaScript

 JavaScript is single-threaded
 Must use “polling” technique to achieve concurrency

Previous Work

 Morfik
 GWT
 Script#
 Disadvantages:

 No threading!!
 Symbol resolution
 Tied to heavy weight frameworks

 Not Script#

Previous Work

Symbol Resolution

9

Symbol Resolution

0

20

40

60

80

100

120

140

160

180

0 1000 2000 3000 4000 5000 6000 7000 8000

of variables

ti
m

e
 i
n

 m
il
li
s
e
c
o

n
d

s

New Approach

 My approach
 Using existing, mature, well-supported, production

quality tools to develop JavaScript applications
 Support for threading

 Why is this better?
 Code auto-completion/refactoring in IDE
 Unit testing
 Continuous integration
 No more callbacks
 GUI applications more responsive

Implementation

 Main parts
 Compiler

 Front end
 Build CFG and code abstractions

 Middle end
 Performs optimizations, pseudo-register allocation

 Back end
 Code generation (threaded/non-threaded)

 Linker
 Resolves symbols and builds executable “binary”

 Kernel
 Written entirely in C#, provides runtime for threading

 Libraries
 Base class libraries, libraries for DOM, CSS, XmlHttpRequest, etc

Implementation - Front End

 Reads in MSIL assemblies using open source
Mono Cecil assembly inspection library

 Builds an abstraction of the code and metadata
 This is called the “Code Model”

 Front ends can be written to support any other
input language
 There is a clean interface to implement this
 Java support would be quite easy to implement

Implementation - Front End

 Code Model:
 Contains useful abstractions of MSIL language constructs

and metadata concepts. For example:
 IAssembly = MSIL assembly
 IAssembly -> GetTypes() returns ITypeDeclaration array
 ITypeDeclaration -> GetMethods() returns IMethodDeclaration

array
 IMethodDeclaration -> MethodBody property:

 Locals, arguments, code size, custom attributes, etc
 MSIL code stream in bytes
 CFG representation of code (most valuable)

 IAssignStatement
 IMethodInvokeExpression
 IBinaryExpression

 Code model contains on the order of 100 different classes

Implementation - Front End

CFG example:
__p.TestLoop = function()

{

 var num1 = 0;

 while(num1 < 100)

 {

 num += 1;

 if(num1 % 10)

 {

 num1 += 1;

 }

 }

}

Implementation - Middle end

Manipulates and optimizes intermediate
form (CFG) to prepare for back end
code generation

Implementation - Middle end
 Basic steps (program/data analysis):

 Separate complex CFGNodes into more simple ones
 Dominator analysis - which nodes ALWAYS come before other nodes as code is

executed?
 Transitive closures - set of all nodes reachable from a given node
 Single Static Assignment (SSA) -
 Loop tree - which loops are inner loops? (useful for optimization)
 Def and Use sets - which variables are defined and used at a given node?
 Liveness - which variables are “live” at a given node? (store meaningful data which is

used later on)
 Reaching definitions - what are the possible definitions of a variable at a given node?
 Gen and Kill sets - like “Liveness” but for expressions
 Optimizations
 Register allocation

 Actual steps involve several iterations of these basic steps and in
different orders (phase ordering)

Implementation - Middle end

 Optimizations
 Copy propagation
 Constant propagation
 Constant folding
 Dead code elimination

Implementation - Middle end

 Optimizations example:
 Demonstrates copy/constant propagation,

constant folding, and dead code elimination
Original C# (not optimized):

private int TestReachingDefs()
{
 int num1 = 10;
 int num2 = 12;
 num2 = num1;
 num1 = 13;
 return num2;
}

Compiler output (optimized):

__p.TestReachingDefs = function()
{
 return 10;
}

Implementation - Middle end

 Pseudo-register allocation
 Pseudo-registers are JavaScript local variables
 Register allocation allows us to reuse pseudo-registers that

are no longer live
 In certain JavaScript runtimes (Rhino JS runtime), local

variables are mapped to actual machine registers at runtime.

 Graph coloring algorithm

Implementation - Compiler

Register allocation example:
 Interference graph

 $t38 and $t84
are temporary variables

 x, f, num2 and num3 are
real local variables or
arguments

 6 variables reduced to
only 4 pseudo-registers

Implementation - Back end

 Perform code generation
 Preemptive code
 Non-preemptive code

 Emits object file for linker
 New back ends can be written to generate code for

other runtime systems
 Actionscript

 Also runs in browser
 Adobe claims 98% penetration (more than JavaScript)
 Hardly any cross-browser issues
 Flash player 8.5 features JIT compiler

 Significantly faster than interpreted JavaScript

Implementation - Kernel

 Written entirely in C#
 Facilitates execution of threaded code
 Simple priority based scheduler
 Provides mechanisms for context switching

Implementation - Libraries

 Base class library (OSCorlib.dll) replacing mscorlib.dll
 Maps special .NET types to built-in JavaScript types

 Object, String, Number, Error, etc
 Provides abstractions for threading

 Thread
 Locks
 Conditions
 Semaphores

 System.Browser.dll
 DOM, CSS, XmlHttpRequest interfaces
 Shows interoperability with existing code

Results

 Threaded code is slower than hand-written JavaScript
 However, perceived performance is not restricted
 “This script has been unresponsive...” - no longer an issue

 Scope chains are shortened to a maximum of 2 levels
 JavaScript programmers modularize code using closures
 This has hidden impact on performance
 Compiler flattens scope but maintains namespace coherence
 Speed increase of by factor of 2 in some cases

Results

 No more symbols at runtime
Symbol Resolution vs. Array Indexing

0

20

40

60

80

100

120

140

160

180

0 1000 2000 3000 4000 5000 6000 7000 8000

of variables

ti
m

e
 i
n

 m
il
li
s
e
c
o

n
d

s

Symbol Resolution Array Indexing

Results

 Development experience:
 Writing C# in Visual Studio is more efficient
 Intellisense
 Code overview
 Documentation *****

