MSIL to JavaScript Compiler

“s—

Michael Ten-Pow

Problem Description

nat is it?

W
Why is it important?
W

Ny was it hard?

What is it?

A compiler - translates code into executable
programs

v Input is an MSIL assembly (Microsoft .NET)

v A program written in C#, VB.NET or another .NET
language

v" Output is a functionally equivalent program in
JavaScript

v Runs in a browser environment over the web

Why is it important?

New interest in JavaScript development

v AJAX (Asynchronous JavaScript and XML)
v Web 2.0

Existing JavaScript development tools are poor - JavaScript was never

meant to be used this way

v No good IDE (Integrated Development Environment)

v Class outlines, code refactoring, code auto-complete (intellisense), project
management

v JavaScript not strongly-typed

v" Features that come for free with other languages/platforms are not available
v Build systems, code optimization, code modularization/componentization

Why is it important?

MSIL has a great set of development tools

v" IDEs: Visual Studio, SharpDevelop, MonoDevelop, X-Develop,
Eclipse

Development can be done in almost any language and compiled

to MSIL using existing compilers

v' C#, VB.NET, Java, JScript.NET, C++, OCaml, Boo, IronPython,
Perl, and many others

MSIL gives us several powerful advantages for free

Classes, namespaces and other useful language constructs
Versioned module system (assemblies)

Code optimization

XML documentation

More...

Why is it important?

-

JavaScript is single threaded

v" Asynchronous callbacks - confusing code
v" GUI applications - unresponsive

Why is it hard?
MSIL and JavaScript do not map “one-to-one”

v Some MSIL language constructs had to implemented
programmatically in JavaScript, or were not supported altogether

v' JavaScript is a very dynamic language, MSIL is more strict.
Dynamic aspects of JavaScript are not easily expressed in MSIL.
Compiler/API tricks used to capture dynamic nature of JavaScript

JavaScript is single-threaded

v Must use “polling” technique to achieve concurrency

Previous Work
Morfik
GWT
Script#

Disadvantages:
v No threading!!
v Symbol resolution

v Tied to heavy weight frameworks
v Not Script#

Previous Work

Symbol Resolution

Symbol Resolution

time in milliseconds

4000

of variables

New Approach

-

My approach

v" Using existing, mature, well-supported, production
quality tools to develop JavaScript applications

v Support for threading
Why is this better?

v" Code auto-completion/refactoring in IDE
v" Unit testing

v" Continuous integration

v" No more callbacks

v" GUI applications more responsive

Implementation

Main parts

v Compiler
v Front end

Build CFG and code abstractions
v" Middle end
Performs optimizations, pseudo-register allocation

v" Back end

Code generation (threaded/non-threaded)
v" Linker
Resolves symbols and builds executable “binary”
v Kernel
v" Written entirely in C#, provides runtime for threading

v" Libraries
v' Base class libraries, libraries for DOM, CSS, XmlHttpRequest, etc

Implementation - Front End

Reads in MSIL assemblies using open source
Mono Cecil assembly inspection library

Builds an abstraction of the code and metadata

v This is called the “Code Model”
Front ends can be written to support any other
iInput language

v There is a clean interface to implement this

v" Java support would be quite easy to implement

Implementation - Front End

-
Code Model:

v" Contains useful abstractions of MSIL language constructs
and metadata concepts. For example:

v |Assembly = MSIL assembly
v - IAssembly -> GetTypes() returns ITypeDeclaration array

v' ITypeDeclaration -> GetMethods() returns IMethodDeclaration
array

v" IMethodDeclaration -> MethodBody property:
Locals, arguments, code size, custom attributes, etc
MSIL code stream in bytes
CFG representation of code (most valuable)
v" |AssignStatement
v IMethodInvokeExpression
v" IBinaryExpression

v" Code model contains on the order of 100 different classes

Implementation -

CFG example:

__p.TestLoop = function()
{

var numl = 0;

while (numl < 100)

{

num += 1;

o

if (numl %

{

Front End

25: numl = 0

In:
Out: numl

23: (numl LessThan 100)

In: numl
Out: numl

21: numl = (numl Add 1)

In: numl
Out: numl

9: ((num1 Modulus 10) [dentityInequality null)

In: numl
Out: numl

15: numl = (numl Add 1)

In: numl
Out: numl

Implementation - Middle end

Manipulates and optimizes intermediate
form (CFG) to prepare for back end
code generation

Implementation - Middle end

Basic steps (program/data analysis):

v' Separate complex CFGNodes into more simple ones

v" Dominator analysis - which nodes ALWAYS come before other nodes as code is
executed?

Transitive closures - set of all nodes reachable from a given node

Single Static Assignment (SSA) -

Loop tree - which loops are inner loops? (useful for optimization)

Def and Use sets - which variables are defined and used at a given node?

Liveness - which variables are “live” at a given node? (store meaningful data which is
used later on)

Reaching definitions - what are the possible definitions of a variable at a given node?
Gen and Kill sets - like “Liveness” but for expressions
Optimizations

v" Register allocation

Actual steps involve several iterations of these basic steps and in
different orders (phase ordering)

Implementation - Middle end

Optimizations
v Copy propagation
v Constant propagation

v Constant folding
v" Dead code elimination

Implementation - Middle end

Optimizations example:

v" Demonstrates copy/constant propagation,
constant folding, and dead code elimination

Original C# (not optimized) : Compiler output (optimized) :

private int TestReachingDefs () __p.TestReachingDefs = function ()
{ {

int numl 10; return 10;

int num?2 12; }

numZ2 = numl;

numl = 13;

return num?2;

Implementation - Middle end

Pseudo-register allocation

v Pseudo-registers are JavaScript local variables
v" Register allocation allows us to reuse pseudo-registers that

are no longer live

v In certain JavaScript runtimes (Rhino JS runtime), local
variables are mapped to actual machine registers at runtime.

Graph coloring algorithm

Implementation - Compiler

Register allocation example:

v’ Interference graph
v/ $t38 and $t84

are temporary variables

v X, f, num2 and num3 are
real local variables or
arguments

v' 6 variables reduced to
only 4 pseudo-registers

Implementation - Back end

Perform code generation
v" Preemptive code
v" Non-preemptive code

Emits object file for linker

New back ends can be written to generate code for
other runtime systems

v" Actionscript
v" Also runs in browser
v Adobe claims 98% penetration (more than JavaScript)
v" Hardly any cross-browser issues

v" Flash player 8.5 features JIT compiler
Significantly faster than interpreted JavaScript

Implementation - Kernel
Written entirely in C#
v" Facilitates execution of threaded code
v" Simple priority based scheduler

v" Provides mechanisms for context switching

Implementation - Libraries

Base class library (OSCorlib.dll) replacing mscorlib.dll

v Maps special .NET types to built-in JavaScript types
v" Object, String, Number, Error, etc

v" Provides abstractions for threading
v Thread
v" Locks
v Conditions
v" Semaphores
System.Browser.dll

v" DOM, CSS, XmlHttpRequest interfaces
v Shows interoperability with existing code

Results

Threaded code is slower than hand-written JavaScript
v However, perceived performance is not restricted
v" “This script has been unresponsive...” - no longer an issue

Scope chains are shortened to a maximum of 2 levels

v'JavaScript programmers modularize code using closures

v" This has hidden impact on performance

v Compiler flattens scope but maintains namespace coherence
v Speed increase of by factor of 2 in some cases

Results

No more symbols at runtime

Symbol Resolution vs. Array Indexing

time in milliseconds

4000
of variables

Symbol Resolution Array Indexing

Results

Development experience:

v Writing C# in Visual Studio is more efficient
v Intellisense

v Code overview
v" Documentation *****

